2.33

From The Algorithm Design Manual Solution Wiki
Jump to navigation Jump to search

The closed-form of the geometric series gives   f₃(n)=∑i=0ⁿ2ⁱ = 2n+1−1 = Θ(2ⁿ) and thus   f₄(n)=log₂(∑2ⁱ)=log₂(2n+1−1)=Θ(n).
Comparing growth rates: 1. f₄(n)=Θ(n) 2. f₂(n)=n(log n)² = Θ(n log²n) (> linear) 3. f₁(n)=n²log n = Θ(n² log n) (> quadratic) 4. f₃(n)=Θ(2ⁿ) (exponential) Therefore the increasing asymptotic order is: [math]f_4(n) \; \in \; o\!\big(f_2(n)\big) \; \in \; o\!\big(f_1(n)\big) \; \in \; o\!\big(f_3(n)\big)[/math], i.e. f₄(n) < f₂(n) < f₁(n) < f₃(n).


Back to Chapter 2