2.41

From The Algorithm Design Manual Solution Wiki
Jump to navigation Jump to search

1. Three nested summations
[math]\displaystyle T(n)=\sum_{i=1}^{\,n/2}\;\sum_{j=i}^{\,n-i}\;\sum_{k=1}^{\,j}1.[/math]

2. Simplification
Inner-most sum : [math]\sum_{k=1}^{\,j}1=j.[/math]
[math]\displaystyle T(n)=\sum_{i=1}^{\,n/2}\;\sum_{j=i}^{\,n-i}j.[/math]

Evaluate the middle sum:
[math]\displaystyle \sum_{j=i}^{\,n-i}j =\frac{(n-i)(n-i+1)}{2}-\frac{(i-1)i}{2} =\frac{n(n-2i+1)}{2}. [/math]

Now sum over i:
[math]\displaystyle T(n)=\frac{n}{2}\sum_{i=1}^{\,n/2}(n-2i+1) =\frac{n}{2}\Bigl((n+1)\frac{n}{2}-\frac{n}{2}\Bigl(\frac{n}{2}+1\Bigr)\Bigr) =\frac{n}{2}\cdot\frac{n^{2}}{4} =\frac{n^{3}}{8}. [/math]

Therefore
[math]\boxed{T(n)=\dfrac{n^{3}}{8}=\Theta(n^{3})}.[/math]


Back to Chapter 2