5.13
Using the Master/iteration methods:
1. Algorithm [math]A[/math]:
T(n)=5T(n/2)+Θ(n). Here a=5, b=2, f(n)=n, so nlog₂5≈n2.322 dominates.
T(n)=Θ(nlog₂5) = O(n2.32).
2. Algorithm [math]B[/math]:
T(n)=2T(n-1)+Θ(1). Unfolding gives T(n)=2·2···2 = 2n, hence
T(n)=Θ(2n) = O(2n).
3. Algorithm [math]C[/math]:
T(n)=9T(n/3)+Θ(n²). Now a=9, b=3, nlog₃9=n², so f(n)=Θ(n²) matches case 2 of the Master Theorem.
T(n)=Θ(n² log n) = O(n² log n).
Asymptotically O(n² log n) < O(n2.32) << O(2n), so for large problem sizes the best choice is Algorithm [math]C[/math].
Back to
Chapter 5