5.15
Let a = 64 and b = 4 in the Master Theorem.
Then nlogba = nlog464 = n3.
We compare each f(n) with n³.
(a) T(n) = 64 T(n/4) + n⁴
f(n) = n⁴ = Ω(n³·n¹) = Ω(n3+1).
Since 64·(n/4)⁴ = n⁴/4 ≤ c·n⁴ with c = ¼ < 1, the regularity condition holds.
Case 3 ⇒ T(n) = Θ(n⁴).
(b) T(n) = 64 T(n/4) + n³
f(n) = n³ = Θ(nlog464).
Case 2 ⇒ T(n) = Θ(n³ log n).
(c) T(n) = 64 T(n/4) + 128
f(n) = Θ(1) = O(n3 – ε) for ε = 3.
Case 1 ⇒ T(n) = Θ(n³).
Hence:
(a) Θ(n⁴), (b) Θ(n³ log n), (c) Θ(n³).
Back to
Chapter 5